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Abstract

State-of-the-art generative models exhibit powerful
image-generation capabilities, introducing various ethical
and legal challenges to service providers hosting these mod-
els. Consequently, Content Removal Techniques (CRTs)
have emerged as a growing area of research to control out-
puts without full-scale retraining. Recent work has explored
the use of Machine Unlearning in generative models to ad-
dress content removal. However, the focus of such research
has been on diffusion models, and unlearning in Generative
Adversarial Networks (GANs) has remained largely unex-
plored. We address this gap by proposing Text-to-Unlearn,
a novel framework that selectively unlearns concepts from
pre-trained GANs using only text prompts, enabling feature
unlearning, identity unlearning, and fine-grained tasks like
expression and multi-attribute removal in models trained on
human faces. Leveraging natural language descriptions,
our approach guides the unlearning process without re-
quiring additional datasets or supervised fine-tuning, offer-
ing a scalable and efficient solution. To evaluate its effec-
tiveness, we introduce an automatic unlearning assessment
method adapted from state-of-the-art image-text alignment
metrics, providing a comprehensive analysis of the unlearn-
ing methodology. To our knowledge, Text-to-Unlearn is the
first cross-modal unlearning framework for GANs, repre-
senting a flexible and efficient advancement in managing
generative model behavior.

1. Introduction
Generative image models, popularized by Generative Ad-
versarial Networks (GANs) [10] and diffusion models [13,
26], can synthesize highly detailed, photorealistic images.
As these models continue to advance, there is an increas-
ing need for mechanisms that enable selective removal of
learned concepts, ensuring fine-grained control over model
outputs without requiring expensive, full-scale retraining.
The ability to precisely remove unwanted concepts is crit-
ical for applications ranging from artistic integrity preser-
vation to ethical AI development. Content removal meth-

ods from generative image models can be broadly catego-
rized into filtering and unlearning-based strategies. Filter-
ing strategies operate post-generation and use trained clas-
sifiers or rules to identify unwanted outputs without modi-
fying the original model weights. They are lightweight and
suitable in dynamic settings (e.g., identifying NSFW con-
tent from a prompt). Unlearning-based strategies involve
finetuning the model to address the root cause. They are
suitable long-term solutions and are particularly relevant to
compliance issues when service providers cannot rely on fil-
tering strategies that may fail to identify unwanted content.

While recent research has explored unlearning methods
in diffusion models, GANs introduce distinct challenges
that require new approaches. Unlike diffusion models,
which naturally integrate text-based conditioning for im-
age generation and modification, GANs lack direct textual
control, making feature-level unlearning significantly more
complex. However, GANs remain relevant due to their
unique advantages: (i) they generate images in a single
forward pass, providing significant speed advantages over
diffusion models, (ii) they are more resource efficient, and
(iii) their latent spaces allow for fine-grained attribute con-
trol [2, 15, 35].

Existing work on unlearning for GANs has remained
largely limited in scope, often focusing on simplistic at-
tribute erasure without addressing multi-attribute interac-
tions or evaluating unlearning effectiveness in a systematic
manner. To address these limitations, we propose Text-to-
Unlearn: A Cross-Modal Approach to Unlearning in GANs.
Our approach uses natural language descriptions to guide
the unlearning process, allowing for targeted concept re-
moval without the need for additional datasets. Our key
contributions include:
• A novel unlearning framework that removes learned con-

cepts in GANs using only a text prompt, eliminating the
need for additional data collection or supervised fine-
tuning.

• An extension of generative unlearning in GANs to com-
plex, fine-grained tasks, including expression unlearning,
multi-attribute unlearning, and disentangled feature re-
moval.
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• A new quantitative evaluation metric, degree of unlearn-
ing (γ), designed to measure unlearning performance us-
ing state-of-the-art Vision-Language Models (VLMs).

2. Related Work

2.1. Machine Unlearning
Machine Unlearning [3] was originally developed as a solu-
tion to support the right-to-be-forgotten, which is a require-
ment of privacy regulations like GDPR [23] and CCPA [9].
The goal was to erase the influence of selected data sam-
ples without incurring the cost of retraining the model from
scratch. Beyond user privacy, unlearning has been adopted
for correcting biases and confusion in deep learning mod-
els [16]. In such cases, the error for a particular class (e.g.,
in classification) is maximized. More recently, unlearning
has also been leveraged to eliminate backdoor attacks in
deep learning models [8, 34]. One might observe the recur-
ring theme that Machine Unlearning has traditionally been
studied in a supervised setting. As such, there is much to
explore regarding how unlearning can be adapted to solve
problems pertaining to generative models.

2.2. Generative Image Models and Unlearning
To address the potential misuse of generative image mod-
els (e.g., StyleGAN2 [14], Stable Diffusion [26], DALL-
E2 [28], etc.), recent work has explored the idea of gen-
erative unlearning. For example, Seo et al. proposed
GUIDE [32] for identity unlearning in GANs using a ref-
erence image. Using GUIDE, individual identities can be
unlearned even if the identity has not been seen during train-
ing. GUIDE makes use of a latent target unlearning method
and an adjacency aware loss to ensure that all points in the
latent space corresponding to an identity map to a different
identity after the unlearning process while preserving the
overall utility of the model. In this case, the problem is to ef-
fectively map neighboring points in the latent space without
damaging the pre-trained GAN’s performance; however, we
consider a relatively broad problem in which text prompts
can describe several types of features that are not necessar-
ily close to each other in the latent space.

Moon et al. explored feature unlearning in VAEs and
GANs (e.g., unlearning features like “bangs”). They rely on
curated datasets that are used to finetune the model as part
of the unlearning process. The features of unlearning are
based on annotations provided by datasets (e.g., CelebA)
or frameworks like Morpho-MNIST [4] which can measure
the extent of learning for features in the MNIST dataset. We
consider the unlearning problem with fewer assumptions
and study its application for models pre-trained on large
high resolution datasets like Flickr-Faces HQ 1024 × 1024
(FFHQ) where such data curation may be infeasible or in-
accessible due to privacy reasons.

Other than the aforementioned research, there has not
been much work related to generative unlearning for GANs.
However, unlearning and concept erasure has been studied
within the context of diffusion models. Safe Latent Dif-
fusion (SLD) [31] is a method to mitigate the generation
of content at inference time without the need for any addi-
tional finetuning of the diffusion model. Recent work like
MACE [21], Erased Stable Diffusion (ESD) [7], and Forget-
Me-Not [36] propose various methods to finetune diffusion
models and perform concept erasure. Our proposed method
broadly falls into this category of methods, which uses fine-
tuning to erase knowledge from the model.

3. Problem Statement
As mentioned earlier, unlike existing unlearning research,
class labels may not always be available or even applicable
in the context of generative models. Also, collecting images
even for the purpose of unlearning may be challenging due
to privacy regulations like GDPR and CCPA. Thus, the mo-
tivation for the methods discussed in this paper arises from
the following question: Can we flexibly unlearn concepts
from a GAN using only text prompts?

As shown in StyleCLIP [25], text prompts can be used
to drive image manipulation in the latent space of the GAN
to make either fine-grained edits or even incorporate fea-
tures of popular individuals using the power of CLIP’s [27]
joint embedding space. We show some relevant examples
of StyleCLIP manipulations in Figure 1.

Figure 1. Examples of StyleCLIP manipulations of an image. The
driving text for the edit is listed below each image.

Modern text-to-image generation models such as
StyleGAN-T [30], Stable Diffusion, and DALL-E2 can gen-
erate images from textual descriptions that are only limited
to the user’s imagination. As such, we believe the ability
to unlearn must be just as flexible as the image genera-
tion process. Thus, our framework is centered around us-
ing only text prompts as a driver for the unlearning process
to support unlearning at different levels of granularity (e.g.,
unlearning a hairstyle, hair color, identity, etc.) like those
shown in Figure 1.

Now, we formalize the unlearning problem in GANs. We
assume that the original training dataset is not available dur-
ing the unlearning process to comply with the aforemen-
tioned privacy regulations. Furthermore, we do not require
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Figure 2. Overview of the Text-to-Unlearn framework for unlearning the feature “purple hair” as an example. In the first phase, a reference
direction to guide the unlearning is precomputed once. In the second phase, the precomputed reference direction is used to steer the
trainable generator’s synthesis network away from generating undesirable images.

any additional “forget” samples to be collected by the train-
ing authority for the unlearning process. The only require-
ment is the model and a text prompt that describes the unde-
sirable feature or concept to be erased. To our knowledge,
this is the first work to explore unlearning in GANs with
such limited assumptions and versatility.

Consider a pre-trained and trainable GAN Generator
Gt(θ0) where θ0 represents the initial model parameters.
We wish to develop an unlearning strategy Λ that unlearns
a concept described by text prompt p. Formally, the result
of the unlearning strategy is a target generator Gt(θ) where
θ represents the updated model parameters:

Gt(θ) ≜ Λ(Gt(θ0), p) (1)

With the updated parameters θ, the generator should no
longer be able to generate images with the undesirable fea-
ture or concept described by the text prompt p while pre-
serving the performance on other concepts. For example, if
we wish to unlearn the feature “purple hair”, the unlearning
strategy Λ should not affect the ability of Gt(θ) to generate
images with blonde hair.

However, there are challenges to unlearning in GANs:

• Erasing concepts from the GAN’s latent space without af-
fecting the overall image synthesis quality is difficult due
to entanglement in the latent space, i.e., erasing one con-
cept can easily affect the generation of several other fea-
tures.

• Unlike diffusion models, GANs do not have textual inputs
to generate samples for the unlearning process. Finding
interpretable directions in the GAN’s latent space for each
dataset is intractable at scale.

• A key challenge specific to unlearning in GANs is the
difficulty in measuring the extent to which unlearning is
successful because it can be subjective.

4. Methodology
In this section, we first discuss the components of our
framework (shown in Figure 2) and then introduce one
of our core contributions: directional unlearning. Our
methodology is motivated by the few-shot domain adapta-
tion scheme in StyleGAN-NADA [6].

4.1. Overview
Our framework consists of four key components: a latent
mapper Mp trained on a text prompt p that describes the
concept to be unlearned, a frozen copy of the generator Gf ,
a trainable generator Gt, and a pre-trained CLIP [27] model.
Latent Mapper (Mp). The latent mapper Mp (as described
in StyleCLIP [25]) is a shallow neural network that maps la-
tent codes within StyleGAN’sW+ space, i.e., Mp :W+ →
W+ and is used to edit images according to the prompt p.
Suppose a point w ∈ W+ corresponds to an image of a man
with black hair and the text prompt p is “purple hair”. Then,
the latent mapper can be used to compute ŵ = w+Mp(w)
such that ŵ corresponds to an image of the same person
with the only difference being purple hair. Simply put, we
can use the latent mapper to edit any image according to a
text description.
Generators. The trainable GAN generator Gt will be fine-
tuned using our unlearning strategy and will no longer pro-
duce images with the unlearned feature after the unlearning
process is complete. Gf is a copy of Gt before unlearning
and is used to generate images containing the feature to be
unlearned.
Pre-trained CLIP model (E). We use a standard pre-
trained CLIP model E to capture images in a joint embed-
ding space. We refer to CLIP’s visual encoder as EI .

4.2. Directional Unlearning
The overall idea is to finetune Gt using a few samples taken
from its latent space so that it does not produce images
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containing the undesirable properties described by the text
prompt. Since GANs are prone to mode collapse, Gf and
Mp are used to help generate specific images, which are
used to regularize the training with appropriate loss com-
ponents. After the finetuning (unlearning) is complete, Gf

can be discarded.
Our unlearning process is based on guiding Gt along a

direction in the CLIP embedding space derived from the
text prompt p, so we deem our method as directional un-
learning. The process is split into two phases: (i) Phase 1:
Precomputing a reference direction for unlearning, and (ii)
Phase 2: Few-shot Unlearning.
Phase 1. We choose a randomly sampled batch of latent
codes w0 ∈ W+ called the initial latent codes. The latent
mapper uses the initial latent codes to compute ŵ0 = w0 +
Mp(w0). Then, the corresponding image batches for w0

and ŵ0 are given by x0 and x̂0 (e.g., with purple hair):

x0 = Gf (w0), x̂0 = Gf (ŵ0) (2)

Once the pairs of image batches are computed, we compute
a unit vector i⃗ (operation denoted by ∆ in Figure 2) rep-
resenting the edit direction in the CLIP embedding space.
Specifically,

i⃗ =
EI(x̂0)− EI(x0)

∥EI(x̂0)− EI(x0)∥2
(3)

where EI(·) represents the CLIP visual encoder, and
EI(x0) and EI(x̂0) are the CLIP embeddings of the im-
age batches x0 and x̂0, respectively. Essentially, we capture
the change of adding p (e.g.,“purple hair”) in the embedding
space and later unlearn along this direction.
Phase 2. Now, we perform few-shot unlearning using the
reference direction i⃗ (from Equation 3) from Phase 1. Dur-
ing each finetuning step, a batch of latent codes w ∈ W+ is
sampled and passed through the latent mapper Mp to gen-
erate latent codes ŵ = w+Mp(w). The latent codes ŵ will
be provided as input to Gt and Gf . The rationale for us-
ing a frozen generator is the same as StyleGAN-NADA [6],
i.e., to ensure that optimization favors solutions on the real
image manifold. During the finetuning process, Gf will
constantly generate negative samples, i.e., images contain-
ing undesirable attributes described by p. However, Gt

will adapt to generate the same images without the unde-
sirable attributes because the loss function Lu uses the pre-
computed reference direction i⃗ to guide the unlearning only
along this direction.

During each step, we use the adaptive layer selec-
tion method based on the global CLIP loss described in
StyleGAN-NADA to prevent mode collapse by updating
only a subset of Gt’s parameters. Furthermore, the weights
of Gt’s mapping network are frozen and only the synthesis
network is updated.

Figure 3. Examples of image embeddings in the CLIP space dur-
ing the fine-tuning of Gt. i⃗ is the precomputed reference direction
and, j⃗1 and j⃗T are alignments during and at the end of training,
respectively.

Loss Function. First, we define the unlearning loss func-
tion Lu for feature unlearning:

Lu = Ldir(x̂t, x̂f , i⃗) + λlpipsLlpips(x̂t, x̂f ) +

λidLid(x̂t, x̂f )
(4)

Here,Ldir is the directional loss,Llpips is the LPIPS loss
for perceptual similarity [37], and Lid is an ID loss based
on the ArcFace facial recognition network [5, 25]. x̂f and
x̂t are the images generated by Gf and Gt, respectively. i⃗
is the precomputed reference direction from Equ. 3. The
directional loss Ldir is the key component that guides the
trainable generator Gt away from synthesizing undesirable
features. However, while unlearning the features, we need
to preserve the usability of the latent space for downstream
tasks like image manipulation and domain adaptation, and
thus, we regularize the training process using ID loss and
LPIPS loss. For example, while unlearning hair color or
hairstyle, we would like to preserve the remaining features
of the face. By using this method, latent mappers trained
before unlearning can still be used to generate edits (except
for prompts pertaining to the unlearned concept).

Suppose that dcos(·) represents the cosine similarity
function, then the directional loss is defined as:

Ldir(x̂t, x̂f , i⃗) = 1− dcos(⃗i, j⃗)

j⃗ =
EI(x̂t)− EI(x̂f )

∥EI(x̂t)− EI(x̂f )∥2
(5)

The unit vector j⃗ describes how the output images gen-
erated by Gt and Gf differ in the CLIP embedding space.
During the unlearning process, we want j⃗ to be aligned
with our precomputed reference direction i⃗, which does not
change during training as described earlier. Clearly, min-
imizing Ldir rewards the alignment of i⃗ and j⃗, and this
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(a) Purple Hair (b) Mohawk Hairstyle (c) Spectacles

Figure 4. Qualitative comparison of generated images before and after unlearning features based on the text prompt (below each grid). The
second column corresponds to a latent code that has an undesirable feature and the third column is the image synthesized from the same
latent code after unlearning.

happens when the images generated by Gt progressively
exclude the undesired feature. To illustrate how the direc-
tional loss encourages the unlearning of a concept, consider
a simplified example in Figure 3. For the initial batch of la-
tent codes w0, a reference direction i⃗ is computed based on
Equation 3. For the first batch ŵ1 during training, observe
that the output of Gt still retains purple hair but it is less
prominent. Consequently, j⃗1 is not aligned with i⃗ at this
time step. At the final time step T of training, the vector
jT perfectly aligns with the reference direction i⃗ since the
image Gt(ŵT ) does not contain any purple hair. In this ex-
ample, the input to Gf is always a latent code corresponding
to an image with purple hair. The only way for j⃗ to align
with i⃗ is if Gt synthesizes images without purple hair by
learning along the vector i⃗.

In the case of identity unlearning, we formulate a differ-
ent unlearning lossLu,id such that Gt directs images toward
the mean latent. Here, we only use the LPIPS loss to ensure
optimization favors images from the original domain. Sup-
pose the mean latent is given by w ∈ W+ and the corre-
sponding image is x = Gt(w), then the unlearning loss is
given by:

Lu,id = Ldir(x̂t, x, i⃗id) + Llpips(x̂t, x) (6)

We define i⃗id as the precomputed reference direction for
identity unlearning. Now, it is computed with respect to
the mean latent instead of negative samples from the latent
mapper as shown in Equation 7.

i⃗id =
EI(x0)− EI(x)

∥EI(x0)− EI(x)∥2
, j⃗id =

EI(x̂t)− EI(x)

∥EI(x̂t)− EI(x)∥2
(7)

Here, x0 is the batch of images randomly sampled at the
start of Phase 1. The underlying optimization problem re-

mains the same as before and follows the same high-level
idea depicted in Figure 3.

Notably, the difference from StyleGAN-NADA is that
we do not rely on source-target text pairs for the unlearning
process. Unlike domain adaptation, the text phrases alone
are unable to capture the fine-grained nature of unlearning.
The latent mapper helps generate images, which can be used
to implicitly capture the direction of the prompt p in the
CLIP embedding space for stable unlearning.

5. Experiments

In this section, we discuss the results of our experiments for
a variety of tasks including feature unlearning and identity
unlearning.

5.1. Experimental Setup
We use StyleGAN2 pre-trained on the FFHQ dataset with
an output resolution of 1024 × 1024 for our experiments.
We do not explicitly use a separate dataset for the unlearn-
ing process. All samples needed for finetuning are sampled
directly from the GAN’s latent space. We include training
details for the latent mappers and finetuning process in the
Appendix.

5.2. Qualitative Results
Feature Unlearning. We consider unlearning the follow-
ing features of varying granularity: hair color, hairstyle,
and accessories. The results of the GAN before and af-
ter unlearning are shown in Figure 4, and we see that for
any chosen source image, the latent mapper can generate
an edit with an undesirable feature. Using our text-guided
unlearning scheme, the latent codes of images with unde-
sirable features are now mapped to variations of the source
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(a) Taylor Swift (b) Donald Trump (c) Tupac

Figure 5. Qualitative comparison of generated images before and after identity unlearning. The first column shows source samples from
StyleGAN2. The second column shows images generated using the driving text (below each grid) on the source samples before unlearning.
The third column shows the images for the same points after unlearning.

Figure 6. Examples of non-standard unlearning tasks including
multi-attribute and expression unlearning. Top row: “curly long
hair”, middle row: “surprised”, and bottom row: “angry”.

image without those features.
Identity Unlearning. Our Text-to-Unlearn framework is
based on unlearning using only text prompts. As such, it is
not within our scope to unlearn any identity since access-
ing each identity from a text prompt is not possible. How-
ever, GAN manipulation frameworks like StyleCLIP [25]
and StyleGAN-NADA [6] can use driving text prompts
like “Beyonce” or “Taylor Swift” to leverage CLIP’s un-
derstanding of popular celebrities (presumably seen during
pre-training) to incorporate their features.

Thus, we consider the task of unlearning identities that
are accessible through CLIP’s text encoder. The results of
unlearning identities using Equation 6 are shown in Fig-
ure 5. Unlike feature unlearning, the images correspond-
ing to the unlearned latent codes lack resemblance to the
source images because we direct them toward the mean la-
tent during training. The changes in hair color, hairstyle,
etc. are relatively fine-grained compared to identity manip-

Figure 7. Example of using latent mappers to make edits after
unlearning purple hair (left) and spectacles (right) from the GAN.
The manipulation prompt is listed below each image.

ulation and so, Equation 6 is specifically designed to ensure
the identity is erased instead of preserving it. We choose
to direct the target latent toward the mean latent similar to
GUIDE [32] because the mean latent represents the average
“face” of the learned distribution, ensuring maximal stabil-
ity during unlearning.
Non-Standard Unlearning Tasks. In addition to existing
unlearning tasks like feature and identity unlearning, we
leverage the disentangledW+ space to perform expression
unlearning and multi-attribute unlearning. The key advan-
tage of our text-to-unlearn method is the flexibility provided
by text prompts. We can use the text prompts to unlearn
multiple undesired features using a single text prompt. Sim-
ilarly, we can also unlearn expressions from the model. The
results for the unlearning prompts “curly long hair”, “sur-
prised”, and “angry” are shown in Figure 6.

After unlearning the features, we inspect the usability of
the GAN for downstream tasks like StyleCLIP image ma-
nipulation. We present some example manipulations using
the latent mapper in Figure 7 after unlearning “purple hair”
(left) and “spectacles” (right). We see that the GAN cannot
generate purple hair even after using a new latent mapper
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(a) Baseline: Purple Hair (b) Ours: Purple Hair

(c) Baseline: Mohawk Hairstyle (d) Ours: Mohawk Hairstyle

Figure 8. Comparison of CLIP-FlanT5 VQAScore distributions
for sample text prompts using the baseline method and our direc-
tional unlearning method.

trained on the prompt “purple hair”. However, other ed-
its can be made without training new latent mappers. For
example, the Taylor Swift edit in Figure 7 is identical to
the one presented in Figure 5a. Similarly, after unlearning
spectacles, we can still generate edits for an afro hairstyle
or purple hair color.

5.3. Quantitative Evaluation

We want to quantitatively evaluate unlearning in GANs us-
ing our Text-to-Unlearn method, but existing metrics like
FID [11] and IS [29] evaluate image fidelity and are not
suitable for evaluating unlearning. Sampling latent codes to
count undesirable features before and after unlearning [24]
is possible but hard to scale for our text-guided approach,
requiring classifiers for each prompt. Thus, we focus on cre-
ating a scalable and insightful evaluation process. We can
formulate this problem as measuring the alignment of the
unlearning prompt p with images from the trainable gener-
ator Gt before and after unlearning. Indeed, the method of
measuring this alignment must be capable of capturing the
concept in a cross-modal embedding space.
Evaluation Metrics. Recent work [19, 22, 33] has exten-
sively explored the problem of measuring image-text align-
ment and moving beyond simple alignment metrics like
CLIP score. These new metrics are well-suited to mea-
sure the image-text alignment before and after unlearning.
We use the image-text matching score (ITM) from the mul-
timodal model BLIP-2 [17, 18] and the VQAScore [19]
metric computed using CLIP-FLanT5 XL and LLaVA-1.5
7B [20]. VQAScore has outperformed several image-text
alignment baselines and achieved state-of-the-art results.
To evaluate identity unlearning, we use a latent mapper

to choose latent codes of images that have features of the
identity to be unlearned. Then, we compare the images of
those latent codes after unlearning using the ArcFace ID
network [5].
Baseline. Since there is no relevant work that uses only text
to unlearn from GANs, we employ an intuitive baseline: We
use the latent mapper to generate negative samples (images
containing the feature or identity to be unlearned) from Gt

and simply maximize the CLIP loss with respect to the un-
learning prompt, i.e., maximize LCLIP (x̂t, p). x̂t is the
synthesized image during training and p is the prompt. This
approach does not use the directional loss from our method.
For example, while unlearning purple hair, we would max-
imize the loss of each image during unlearning against the
text prompt “purple hair” via CLIP.
Evaluation Method. For each text prompt, we use a la-
tent mapper to help sample 1000 images from the GAN (in-
domain images) before and after unlearning. Initially, most
of the samples generated will have the undesired attribute,
but post-unlearning, most will not. Then, we compute
CLIP-FlanT5 VQAScore, LLaVA VQAScore, and BLIP-2
ITM score distributions for both sets of samples. Addition-
ally, for each prompt, we compute the image-text score dis-
tribution on 1000 randomly sampled images as a reference.
After unlearning, the score distribution should be similar to
the random score distribution. We use this reference be-
cause an image-text pair often has a non-zero CLIP score
even if the prompt is completely unrelated to the image.
Some example plots are shown in Figure 8. Our objective
is to maximize the “distance” between the blue histogram
(before unlearning) and the red histogram (after unlearn-
ing). Thus, we propose our metric, degree of unlearning (γ)
in Equation 8:

γ =
W1(A,B)

W1(B,R)
(8)

W1(·, ·) is the Wasserstein 1-distance between two distribu-
tions. A, B, and R are score distributions after unlearning,
before unlearning, and for the random images, respectively.
By score distribution, we refer to the individual image-
text score distribution obtained using either CLIP-FlanT5,
LLaVA, or BLIP-2. We use the Wasserstein 1-distance be-
cause it compares the histograms without making assump-
tions about the underlying distribution and is suitable for
ordered data.

Besides the in-domain evaluation, we assess our unlearn-
ing method on out-of-domain data by encoding 1000 Cele-
bAHQ images into the GAN’s latent space using the e4e
encoder. We then calculate the same score distributions to
confirm that the unlearned model generalizes effectively to
these images, ensuring its reliability for downstream tasks
like image editing (shown in Table 1).

Clearly, directional unlearning outperforms the baseline
for all text prompts. In Figure 8, we see that the blue and
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Text
Prompt

CLIP-FlanT5 (↑) LLaVA-1.5 (↑) BLIP-2 (↑)
In-Domain Out-of-Domain In-Domain Out-of-Domain In-Domain Out-of-Domain

Baseline Ours Baseline Ours Baseline Ours Baseline Ours Baseline Ours Baseline Ours
Purple Hair 0.26 0.74 0.38 0.88 0.46 0.88 0.60 0.80 0.39 0.77 0.76 0.83
Mohawk Hairstyle 0.37 0.81 0.67 0.94 0.84 0.88 0.87 0.94 0.65 0.65 0.78 0.78
Spectacles 0.03 0.73 0.43 0.55 0.02 0.87 0.01 0.64 0.16 0.84 0.21 0.29
Curly Long Hair 0.36 0.85 0.56 0.98 0.32 0.73 0.43 0.88 0.48 0.99 0.70 0.98
Surprised 0.50 0.76 0.66 0.72 0.31 0.70 0.46 0.73 0.42 0.78 0.62 0.95
Angry 0.10 0.62 0.20 0.82 0.16 0.84 0.25 0.92 0.17 0.81 0.25 0.96
Afro Hairstyle 0.62 0.89 0.65 0.82 0.59 0.96 0.68 0.89 0.51 0.99 0.74 0.94
Makeup 0.14 0.89 0.26 0.99 0.12 0.86 0.21 0.97 0.18 0.51 0.60 0.62
Bobcut Hairstyle 0.69 0.70 0.59 0.80 0.35 0.39 0.35 0.56 0.36 0.40 0.57 0.66

Table 1. Degree of unlearning (γ) computed using various image-text alignment scoring metrics for in-domain and out-of-domain images.
Higher scores are better (↑) and are highlighted in bold.

Prompt Taylor Swift Donald Trump Tupac Shakur
ID (Baseline) ↓ 0.38 0.82 0.88
ID (Ours) ↓ 0.2 0.3 0.5

Table 2. ID scores for the baseline method and our method af-
ter unlearning different identities computed using 5000 samples.
Lower scores are better (↓).

red histograms are much more separated using our method
as opposed to the baseline method. We include the average
ID scores for identity unlearning in Table 2 comparing our
method against the baseline method. For each identity we
considered, our method outperformed the baseline method.
We refer the readers to the supplementary material (Sec-
tion 10) for a detailed analysis showing the stability of our
unlearning strategy.

Apart from quantifying the degree of unlearning, we
evaluate the extent to which our unlearning method affects
image generation of other features. First, we sample 400
images per feature for a set of four features (“purple hair”,
“spectacles”, “surprised”, “afro hairstyle”) from the GAN
prior to unlearning and compute the average VQAScore for
each prompt as a baseline. Then, we unlearn each fea-
ture and evaluate the change in the mean VQAScore for the
other three features. In Table 3, we report the shift in mean
VQAScores from the baseline. We see that there is marginal
shift in the scores for unrelated features, suggesting that our
method supports disentangled unlearning.

Ablation Study. We perform three ablation experiments (as
shown in Figure 9): impact of (i) loss function components,
(ii) batch size of the automatic layer selection strategy in
Phase 2, and (iii) batch size used when computing the ref-
erence direction i⃗ (in Phase 1) on the degree of unlearning.
The ideal batch size, for the automatic layer selection strat-
egy and for computing the reference direction i⃗ is 8 based
on the stability across all prompts. We also see that both the
LPIPS loss and ID loss are needed for maximal unlearning.

Feature Purple Hair Spectacles Surprised Afro Hairstyle
Purple Hair -60% +1.2% -0.2% -0.2%
Spectacles -0.4% -30.4% +1% -1%
Surprised -0.4% +1% -20% -1.1%
Afro Hairstyle -0.7% +0.7% +0.8% -44.8%

Table 3. Quantitative results for the effect of unlearning each
feature (rows) on the VQAScore of other unrelated features
(columns). Each entry is a percentage change of the CLIP-FlanT5
VQAScore for that feature with respect to its baseline score before
unlearning.

(a) Ablation on loss
components (directional
loss, ID loss, and LPIPS
loss) of Lu.

(b) Ablation on batch
size used for comput-
ing the reference di-
rection i⃗ in Phase 1.

(c) Ablation on batch
size used for auto-
matic layer selection
in Phase 2.

Figure 9. Ablation experiments for relevant hyperparameters.

6. Limitations, Conclusion, and Future Work

In this paper, we propose Text-to-Unlearn, a method to un-
learn concepts from a GAN using only text prompts. Our
experiments show that Text-to-Unlearn can achieve favor-
able results at different levels of granularity and we vali-
date this using our metric: degree of unlearning (γ). It is
important to acknowledge that our method relies on a pre-
trained CLIP model to guide the unlearning process, and
thus, text prompts that are not well-represented by CLIP’s
visual encoder cannot be expected to achieve effective un-
learning. Furthermore, pre-trained VLMs like CLIP are
known to contain harmful societal biases and these can ad-
versely influence the unlearning procedure. Recent work
by Hirota et al. and Berg et al. propose ways to debias pre-
trained VLMs, which we plan to incorporate in our future
work.
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(a) Spectacles (b) Surprised (c) Angry

Figure 10. CLIP-FlanT5 VQAScore distribution computed over
1000 images before and after unlearning for different text prompts
using the baseline method.

(a) Spectacles (b) Surprised (c) Angry

Figure 11. CLIP-FlanT5 VQAScore distribution computed over
1000 images before and after unlearning for different text prompts
using our directional unlearning method.

7. Additional VQAScore Distributions
We include additional graphs showing the VQAScore dis-
tributions for unlearning some other text prompts in Fig-
ures 10 and 11. Clearly, the red and blue distributions are
much more separated using our method.

8. Details on VQAScore Metric
In this section, we elaborate on the VQAScore image-text
alignment metric used in Section 5. VQA models are de-
signed to answer questions about images and we evaluate
the image-text alignment by querying the model with the
question “Does this figure show {text}? Please answer yes
or no.” The VQAScore presented by Lin et al. is computed
as the probability that the answer is yes given a question and
image, i.e., P(“Yes” | question, image). Despite being sim-
plistic, it has been shown to outperform several image-text
alignment baselines and achieve SOTA results.

9. Training Details
Here, we provide detailed instructions and hyperparameters
used for training the latent mapper and Gt for various un-
learning tasks. Unlike StyleCLIP, we train the latent mapper
on samples from the latent space of the GAN since we do
not use external datasets. Our hyperparameters are different
from StyleCLIP for certain prompts.

There are 3 hyperparameters for the latent mapper train-

ing: (i) ID loss regularization (λID), (ii) L2 loss regular-
ization (λL2), and (iii) Step magnitude in the W+ space
(δ). In practice, the latent mapper is implemented as ŵ =
w + δ ·Mp(w) to ensure gradients are updated stably. The
training parameters are listed below:

Text Prompt λID λL2 δ Levels
Purple Hair 0.1 0.8 0.1 fine, medium, coarse
Mohawk Hairstyle 0.1 0.8 0.8 medium, coarse
Spectacles 0.1 0.8 0.9 medium, coarse
Curly Long Hair 0.1 0.8 0.8 medium, coarse
Surprised 0.1 0.8 0.5 medium, coarse, fine
Angry 0.1 0.8 0.3 medium, coarse, fine
Afro Hairstyle 0.1 0.8 0.8 medium, coarse
Makeup 0.1 0.8 0.3 medium, coarse, fine
Bobcut Hairstyle 0.1 0.8 0.3 medium, coarse
Taylor Swift 0 0.8 0.1 fine, medium, coarse
Donald Trump 0 1.5 0.1 fine, medium, coarse
Tupac Shakur 0 1.5 0.1 fine, medium, coarse

Table 4. Hyperparameters for training the latent mapper.

Additionally, in Table 4, we include the architecture of
the multi-level mapper used for each text prompt. The levels
correspond to the same scheme presented in StyleCLIP. As
a rule of thumb, if no change in color is required, we omit
the finegrained level from the mapper. As such, identities
will require all levels enabled.

For the directional unlearning procedure, we have three
hyperparameters: (i) Learning Rate (lr), (ii) ID loss regu-
larization (λID), and (iii) LPIPS loss regularization (λlpips).
The hyperparameters to reproduce our results are:

Text Prompt lr λID λlpips

Purple Hair 8e-3 4e-3 1e-1
Mohawk Hairstyle 8e-3 4e-3 1e-1
Spectacles 1e-2 2e-3 1e-1
Curly Long Hair 8e-3 4e-3 1e-1
Surprised 8e-3 4e-3 1e-1
Angry 8e-3 4e-3 1e-1
Afro Hairstyle 8e-3 4e-3 1e-1
Makeup 8e-3 4e-3 1e-1
Bobcut Hairstyle 8e-3 4e-3 1e-1
Taylor Swift 8e-3 0 1e-1
Donald Trump 8e-3 0 1e-1
Tupac Shakur 8e-3 0 1e-1

Table 5. Hyperparameters for unlearning.

In Table 5, λID is 0 since this is not a loss component
for identity unlearning as discussed in the main paper.
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10. Discussion on Training Stability

Here, we discuss the stability provided by directional un-
learning during the unlearning process. Based on Figure 8,
one could think of increasing the learning rate for the base-
line method to achieve better unlearning. Figure 12 shows
the results of unlearning after 400 and 700 steps. Using
our directional unlearning method, we can subtly unlearn
the “angry” expression whereas the baseline method causes
distortion in the images generated. Furthermore, as we con-
tinue to fine-tune for a longer number of steps, the quality
of images will not reduce because we unlearn only along a
precomputed direction (from Equation 3).

Figure 12. Qualitative comparison between directional unlearning
(ours) and baseline method for the prompt “angry”. Left most
image was generated using a latent mapper trained on “angry”.

After unlearning for 800 steps, the FID (lower scores
represent higher fidelity) using our method was 6.98 as op-
posed to 49.1 from the baseline method. The FID was
computed using 10000 samples for each of the unlearned
models. However, lower learning rates using the baseline
method can avoid distortion but achieve little to none un-
learning as seen in Figure 10.

11. System and Hardware Details

All our code was tested on Ubuntu 22.04 with PyTorch 2.1.
In terms of hardware requirements, the latent mapper and
unlearning can be implemented using any GPU architec-
ture. The latent mapper training can be done on a T4 GPU.
The unlearning requires at least 24GB of GPU RAM and
thus, we implemented this on an NVIDIA A10G. However,
this should work the same on an NVIDIA 3090. The evalu-
ation scripts can only be run on a GPU with NVIDIA Am-
pere architecture (e.g., A10G, A100, etc.). GPUs like V100
do not support the VQAScore method due to a dependency
on the t2v-metrics library. It may be possible if built from
source and the dependency on the bfloat data type is re-
moved, however, we have not tested this.

12. Prompt Engineering during Evaluation
During evaluation, the “surprised” feature was evaluated
with the text caption “surprised with mouth open” since the
surprised edit using the latent mapper generates images of
faces with their mouth open. Unlike CLIP’s text encoder,
the VQA models can capture the image-text alignment bet-
ter with a more detailed prompt. We suggest using this ap-
proach when evaluating other fine-grained edits as the ob-
jective is not to evaluate the VQA model, but to evaluate the
image-text alignment before and after unlearning. All other
prompts in the paper were evaluated with the same captions
used for unlearning (e.g., “purple hair”, etc.)

13. Algorithms
We briefly outline the unlearning algorithm for feature un-
learning in Algorithm 1.

Algorithm 1 Feature Unlearning using our Directional Un-
learning Method

Require: Mapper (Mp), Gt, Gf , prompt (p), step size (δ),
total steps (smax), batch size (b)

z ← N 8×512(0, 1)
i← compute ref direction(z) ▷ Phase 1
s← 0
while s < smax do ▷ Phase 2

layer selection(Gt, p)
z ← N b×512(0, 1)
w ← Gt.map(z)
ŵ ← w + δMp(w)
x̂f ← Gf .synthesis(ŵ)
x̂t ← Gt.synthesis(ŵ)
compute loss(x̂t, x̂f , i)
update Gt

s← s+ 1
end while

The pseudo-code for identity unlearning is detailed in
Algorithm 2.

Algorithm 3 is the baseline algorithm used in this paper.
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Algorithm 2 Identity Unlearning using our Directional Un-
learning Method

Require: Mapper (Mp), Gt, Gf , prompt (p), step size (δ),
total steps (smax), batch size (b)

z ← N 8×512(0, 1)
w ← Gt.mean latent()
i← compute ref direction(z, w) ▷ Phase 1
s← 0
while s < smax do ▷ Phase 2

layer selection(Gt, p)
z ← N b×512(0, 1)
w ← Gt.map(z)
ŵ ← w + δMp(w)
x̂f ← Gf .synthesis(ŵ)
x̂t ← Gt.synthesis(ŵ)
compute loss(x̂t, x̂f , w) ▷ direct toward mean face
update Gt

s← s+ 1
end while

Algorithm 3 Baseline Unlearning Algorithm

Require: Mapper (Mp), Gt, prompt (p), step size (δ), total
steps (smax), batch size (b)

z ← N 8×512(0, 1)
s← 0
while s < smax do

layer selection(Gt, p)
z ← N b×512(0, 1)
w ← Gt.map(z)
ŵ ← w + δMp(w)
x̂t ← Gt.synthesis(ŵ)
clip loss(x̂t, p) ▷ Global CLIP loss
update Gt

s← s+ 1
end while
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